725 research outputs found

    Optimal approximation of piecewise smooth functions using deep ReLU neural networks

    Full text link
    We study the necessary and sufficient complexity of ReLU neural networks---in terms of depth and number of weights---which is required for approximating classifier functions in L2L^2. As a model class, we consider the set Eβ(Rd)\mathcal{E}^\beta (\mathbb R^d) of possibly discontinuous piecewise CβC^\beta functions f:[1/2,1/2]dRf : [-1/2, 1/2]^d \to \mathbb R, where the different smooth regions of ff are separated by CβC^\beta hypersurfaces. For dimension d2d \geq 2, regularity β>0\beta > 0, and accuracy ε>0\varepsilon > 0, we construct artificial neural networks with ReLU activation function that approximate functions from Eβ(Rd)\mathcal{E}^\beta(\mathbb R^d) up to L2L^2 error of ε\varepsilon. The constructed networks have a fixed number of layers, depending only on dd and β\beta, and they have O(ε2(d1)/β)O(\varepsilon^{-2(d-1)/\beta}) many nonzero weights, which we prove to be optimal. In addition to the optimality in terms of the number of weights, we show that in order to achieve the optimal approximation rate, one needs ReLU networks of a certain depth. Precisely, for piecewise Cβ(Rd)C^\beta(\mathbb R^d) functions, this minimal depth is given---up to a multiplicative constant---by β/d\beta/d. Up to a log factor, our constructed networks match this bound. This partly explains the benefits of depth for ReLU networks by showing that deep networks are necessary to achieve efficient approximation of (piecewise) smooth functions. Finally, we analyze approximation in high-dimensional spaces where the function ff to be approximated can be factorized into a smooth dimension reducing feature map τ\tau and classifier function gg---defined on a low-dimensional feature space---as f=gτf = g \circ \tau. We show that in this case the approximation rate depends only on the dimension of the feature space and not the input dimension.Comment: Generalized some estimates to LpL^p norms for $0<p<\infty

    Approximation in Lp(μ)L^p(\mu) with deep ReLU neural networks

    Full text link
    We discuss the expressive power of neural networks which use the non-smooth ReLU activation function ϱ(x)=max{0,x}\varrho(x) = \max\{0,x\} by analyzing the approximation theoretic properties of such networks. The existing results mainly fall into two categories: approximation using ReLU networks with a fixed depth, or using ReLU networks whose depth increases with the approximation accuracy. After reviewing these findings, we show that the results concerning networks with fixed depth--- which up to now only consider approximation in Lp(λ)L^p(\lambda) for the Lebesgue measure λ\lambda--- can be generalized to approximation in Lp(μ)L^p(\mu), for any finite Borel measure μ\mu. In particular, the generalized results apply in the usual setting of statistical learning theory, where one is interested in approximation in L2(P)L^2(\mathbb{P}), with the probability measure P\mathbb{P} describing the distribution of the data.Comment: Accepted for presentation at SampTA 201

    On Approximate Nonlinear Gaussian Message Passing On Factor Graphs

    Full text link
    Factor graphs have recently gained increasing attention as a unified framework for representing and constructing algorithms for signal processing, estimation, and control. One capability that does not seem to be well explored within the factor graph tool kit is the ability to handle deterministic nonlinear transformations, such as those occurring in nonlinear filtering and smoothing problems, using tabulated message passing rules. In this contribution, we provide general forward (filtering) and backward (smoothing) approximate Gaussian message passing rules for deterministic nonlinear transformation nodes in arbitrary factor graphs fulfilling a Markov property, based on numerical quadrature procedures for the forward pass and a Rauch-Tung-Striebel-type approximation of the backward pass. These message passing rules can be employed for deriving many algorithms for solving nonlinear problems using factor graphs, as is illustrated by the proposition of a nonlinear modified Bryson-Frazier (MBF) smoother based on the presented message passing rules
    corecore